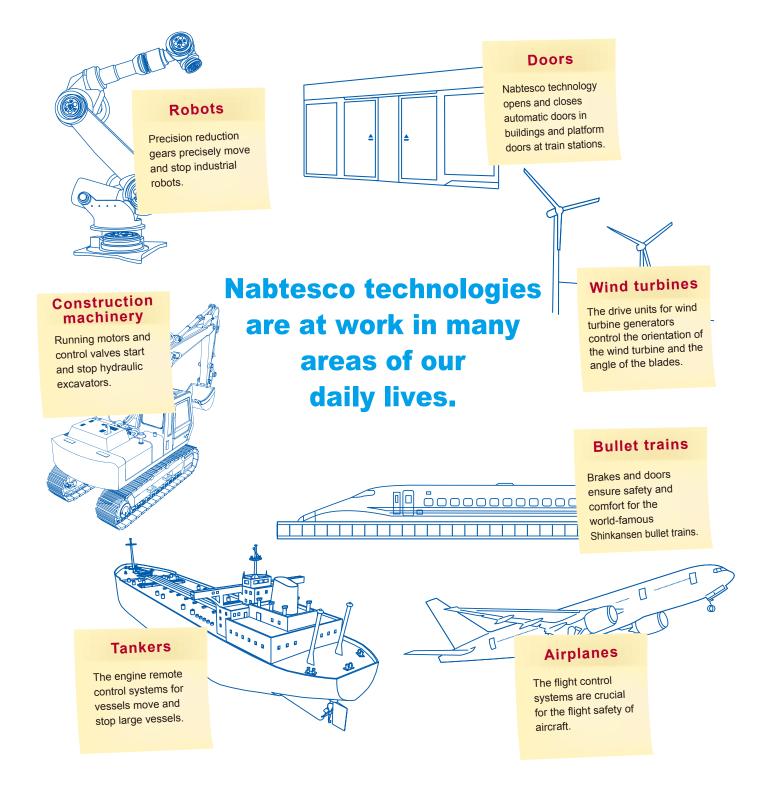


ISO 9001 JQA-1190

Precision Reduction Gear RV[™] Turntable Gearhead

RS Series



Nabtesco

Nabtesco's technologies supporting society

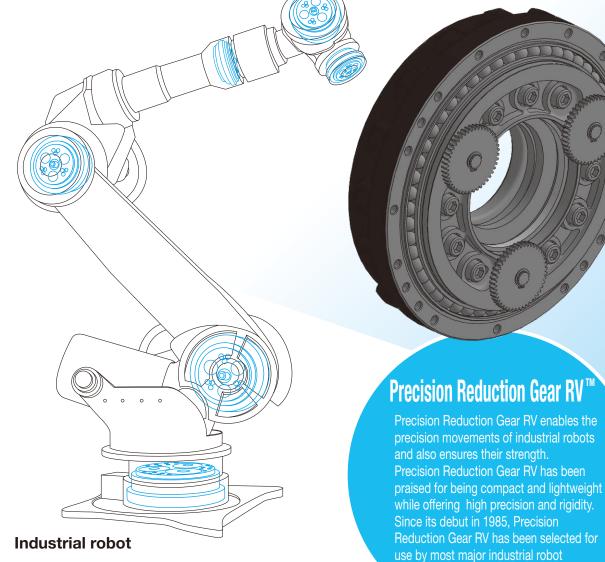
Contributing to society with our 'Moving it. Stopping it.' technologies

Nabtesco manufactures products which are used in everyday life. Our high-accuracy components are essential for moving objects; they may be rarely visible, but are the foundation of everyday objects that you see moving and wonder how. Nabtesco's technologies are found throughout objects that move and stop people's lives.

Who is Nabtesco?

The key words for Nabtesco are 'motion control'. We use our strengths in the fields of component and systems technologies to develop highly creative products. Through the Nabtesco Group as a whole, we can also utilize our advantage of expertise to maximum effect in order to further enhance these strengths.

In the air, on land and at sea, we have a leading share in various fields of both international and domestic markets. Nabtesco will continue to evolve by utilizing its strengths in many fields and by exploring the possibilities of the future.

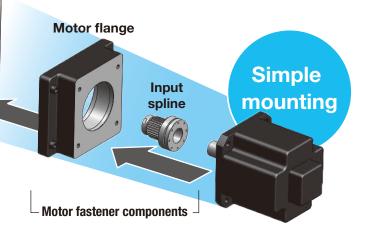


The business alliance between Teijin Seiki and NABCO on hydraulic equipment projects was the beginning of a mutual confirmation by the companies of the other's product configuration, core technologies, corporate strategies and corporate culture. This led to a common recognition that a business merger would be an extremely effective means of increasing corporate value and achieving long-term development. Based on this mutual judgment, in 2003 an equity transfer was conducted to establish Nabtesco as a pure holding company, with both firms as wholly owned subsidiaries. After a year of preparation, both companies were absorbed and amalgamated by means of a short form merger, and Nabtesco was transitioned to an operating holding company.

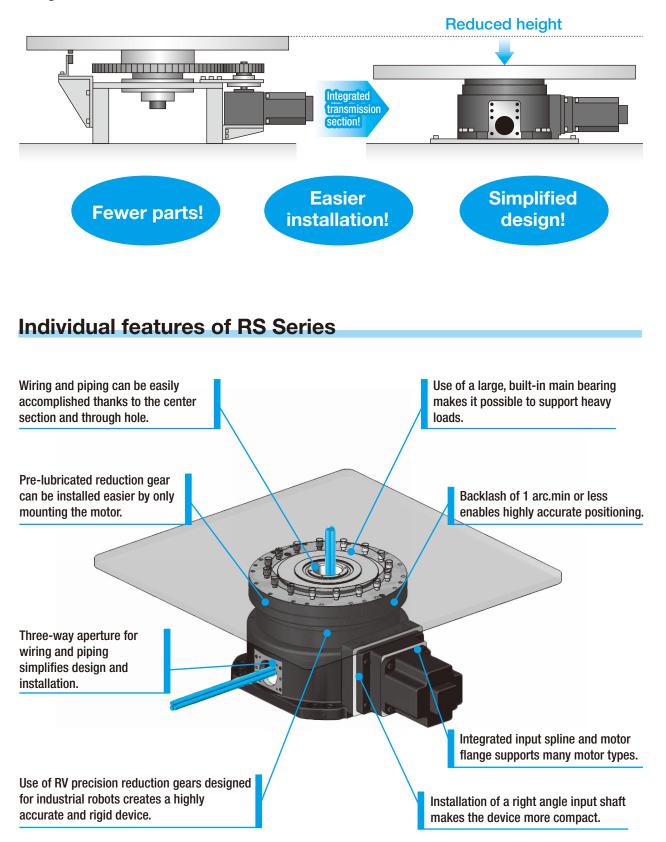
What is the RS Series?	02 - 03
Advantages of RS Series	04 - 05
Main RS Series applications	06
RS series model code	07
Rating table	08
External dimensions Reduction gear main unit	09 - 11
Input spline	12 - 13
Motor flange	14
Technical Information	
Considering the use of the RS Series	15
Glossary	16
Product Selection	
Product selection flowchart	17
Model code selection examples	18 – 25
Allowable moment diagram	26
Technical Data	
No-load running torque	26
Calculation of tilt angle and torsion ang	
Design Points	
Reduction gear installation component	s 28 – 29
Appendix	
Inertia moment calculation formula	30
Troubleshooting checksheet	31
Warranty	Back inside cover

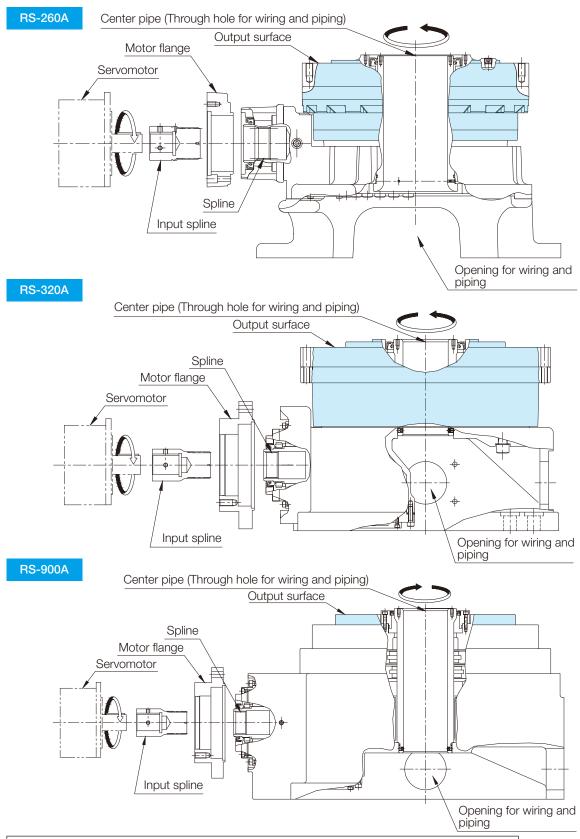
What is the RS Series?

RS Series Eliminates Turntable Problems!


use by most major industrial robo manufacturers around the world.

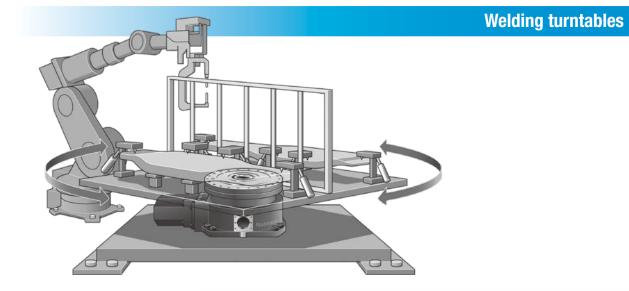
Market share

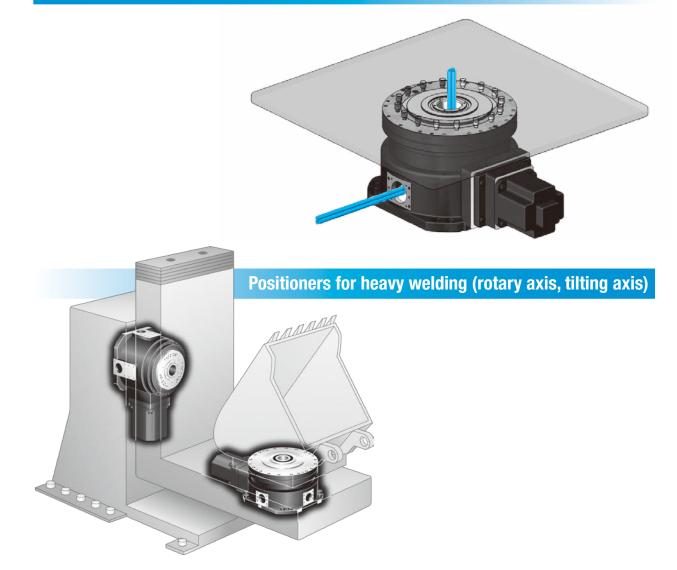

Industrial robot (vertical articulated robot) joints Machine tool ATC drive units 60% share of global market *1 80% share of Japanese market *2 *1/2 Based on Nabtesco studies


Precision Gearhead **RS Series**

The RS Series continues the success of Nabtesco's world-leading RV series of precision reduction gears. These low profile gearheads are pre-lubricated with a sealed structure and are available in three types to suit different load capacities. Each type comes with dedicated fasteners that allow it to be mounted on all major motors for immediate use. As well as reducing the time needed for adjustment, the RS Series significantly decreases both design and component requirements.

More components increase assembly and adjustment times...




Structure and rotation directions

With the RS-260A, RS-320A and RS-900A, the rotation direction of the output shaft and servo motor differs.

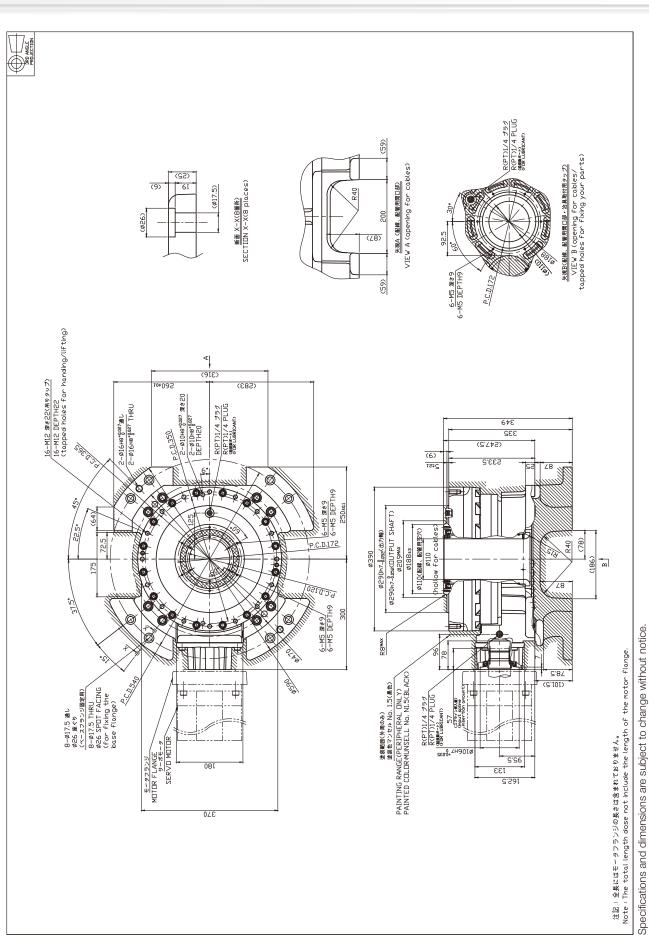
Main RS Series applications

Index tables

RS series model code

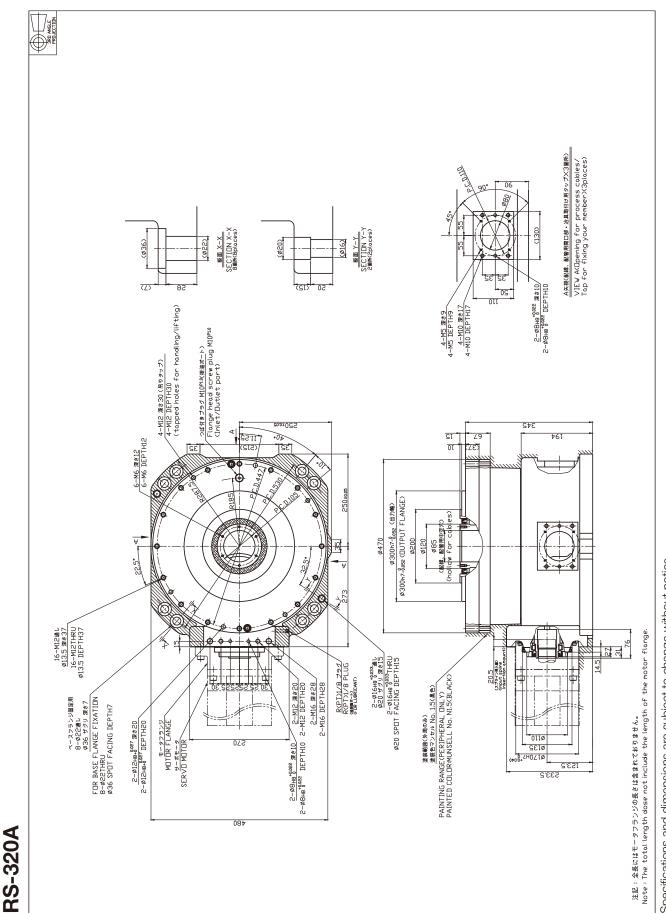
260 A - 120 - SXA - XB RS Model Frame Ratio code Input spline code Motor flange code code number 120 260A Standard component: 3 alphabetic Standard component: 2-letter code (code will differ depending on characters. 320A 170 motor to be attached) Third character may be numerical. RS (Code will differ depending on None: ZZ motor to be attached.) 900A 194 , 240 None: ZZZ

Product code

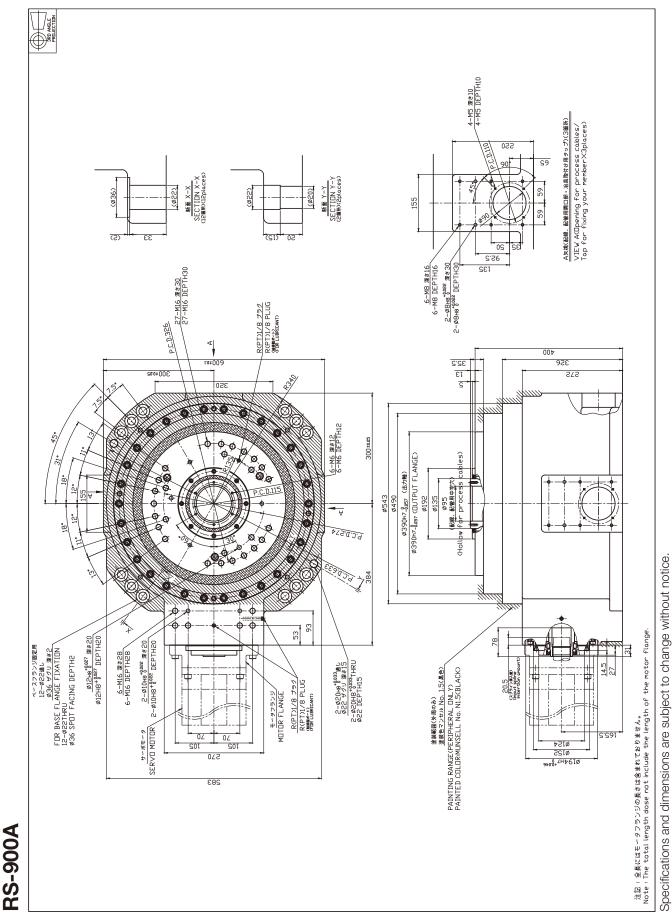

Rating table

	Model			RS-260A	RS-320A	RS-9	900A
	Speed ratio	R		120	170	193.6	240
	Ratio code			120	170	194	240
	Rated torque	То	Nm		3,136	8,8	320
	Rated output speed	No	rpm	15	15	1	5
	Rated life	К	h	6,000	6,000	6,0	000
All	owable acceleration/ deceleration torque	Ts1	Nm	6,370	7,840	17,	640
M	lomentary maximum allowable torque	Ts2	Nm	12,740	15,680	35,	280
	Allowable output speed [Duty ratio: 100%] Note 2	Nso rpm 21.5 20		20	10		
	Backlash		arc.min.	1.0	1.0	1.0	
	Lost motion		arc.min.	1.0	1.0	1	.0
	Startup efficiency (central value)		%	75	75	7	0
aring	Allowable moment Note 4	Mo1	Nm	12,740	20,580	44,	100
Capacity of main bearing	Momentary maximum allowable moment	Mo ₂	Nm	25,480	39,200	88,	200
city of I	Maximum thrust load	Fo	Ν	24,500	49,000	88,	200
Capa	Allowable radial load	Wr	Ν	39,900	54,676	101	,754
	Moment of inertia I(I=GD ² /4) Input shaft conversion value Note 3		kgm²	5.76x10 ⁻³	3.40x10 ⁻³	1.16x10 ⁻²	1.14x10 ⁻²
	Mass		kg	165	290	48	30

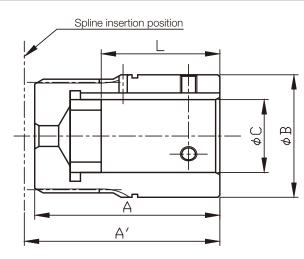
Note: 1. The Rating Table shows the specification values of each individual reduction gear.

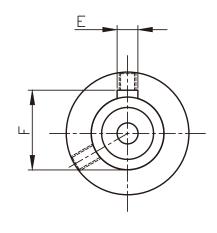

- 2. The allowable output speed may be limited by heat depending on the operating rate. Make sure that the surface temperature of the reduction gear does not exceed 60°C during use.
- 3. The inertia moment value is for the reduction gear. It does not include the inertia moment for the input gear.
- 4. The allowable moment will differ depending on the thrust load. Check the allowable moment diagram (p. 26).
- 5. For the moment rigidity and torsional rigidity, refer to the calculation of tilt angle and the torsion angle (p. 27).
- 6. The rated torque is the value that produces the rated service life based on operation at the rated output speed; it does not indicate the maximum load. Refer to "Glossary" (p.16) and "Product selection flowchart" (p.17).
- 7. The specifications above are based on Nabtesco evaluation methods; this product should only be used after confirming that it is appropriate for the operating conditions of your system.

RS-260A



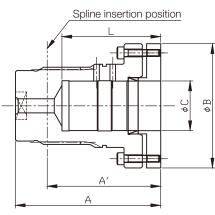
External dimensions Reduction gear main unit

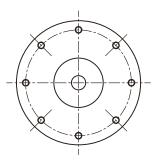

9



Specifications and dimensions are subject to change without notice.

Straight shaft (with key)

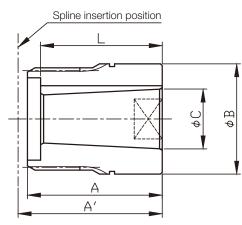


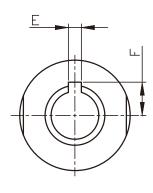


Model	Code	Order item number										
		number	A	A'*	øB		øC	L		E	F	Input shaft equivalent (kgm²)
	WXS	60WA140-*	87	85.5 to 87.5	59	32H7	+0.025 0	45	10	±0.018	35.3	6.69×10 ⁻⁴
RS-260A	WXB	60WA140B*	89	87.5 to 90	59	35	+0.035 +0.010	72	10	±0.018	38.3	6.40×10 ⁻⁴
N3-200A	WB2	60WA423B*	89	87.5 to 90	59	35	+0.035 +0.010	57	10	±0.018	38.3	6.65×10 ⁻⁴
	WXC	60WA140C*	83	81.5 to 83.5	59	28H7	+0.021 0	49	8	±0.018	31.3	6.48×10 ⁻⁴
	YXA	67WA422A*	68	64 to 72	45	28H7	+0.021 0	52	8	±0.018	31.3	2.44×10 ⁻⁴
	YXD	67WA422D*	68	64 to 72	45	28H7	+0.021 0	52	10	±0.018	31.3	2.44×10 ⁻⁴
	YXF	67WA140F*	145	150 to 159	56	38H7	+0.025 0	66.5	10	±0.018	41.3	7.47×10 ⁻⁴
	YXG	67WA140G*	95	113.5 to 120.5	55	32H7	+0.025 0	45	10	±0.018	35.3	5.01×10 ⁻⁴
	YXK	67WA140K*	109	126.5 to 133.5	60	35H7	+0.025 0	55	10	±0.018	38.3	7.11×10 ⁻⁴
RS-320A	YXL	67WA140L*	81	98.5 to 105.5	55	32	+0.043 +0.018	31	10	±0.018	35.3	4.17×10 ⁻⁴
RS-900A	YXM	67WA140M*	57	74.5 to 81.5	45	24	+0.034 +0.013	23	8	±0.018	27.3	2.26×10 ⁻⁴
	YXN	67WA140N*	109	126.5 to 133.5	60	35	+0.035 +0.010	55	10	±0.018	38.3	7.11×10 ⁻⁴
	YXP	67WA140P*	89	106.5 to 113.5	45	24H7	+0.021 0	55	8	±0.018	27.3	3.18×10 ⁻⁴
	YXQ	67WA140Q*	144.5	162 to 169	60	35H7	+0.025 0	55	10	±0.018	38.3	9.38×10 ⁻⁴
	YXR	67WA140R*	125	142.5 to 149.5	60	35	+0.035 +0.010	70	10	±0.018	38.3	8.43×10 ⁻⁴
	YS2	67WA140S*	142	159.5 to 166.5	60	42H7	+0.025 0	80	12	±0.0215	45.3	8.89×10 ⁻⁴

* Ensure that length A' of the spline insertion position is within the range indicated in the table above.

Straight shaft (without key)

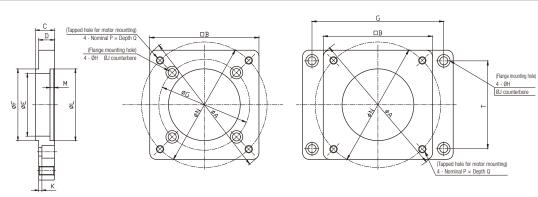




Model	Code	Order item		Inpu	ut spline din	nensions (m	m)	Inertia moment I (I=GD ² /4)	Transmission torque																																							
Model	0000	number	А	A'*	øB	øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		øC		L	Input shaft equivalent (kgm ²)	Nm
RS-260A	WXD	60WA421D*	103	86.5 to 88.5	88	35	35 +0.035 +0.010		1.52×10 ⁻³	106.5																																						
N3-200A			+0.035 +0.010	55	1.53×10⁻³	106.5																																										
	YXB	67WA421B*	86	86 to 92	75	35	+0.035 +0.010	73	7.34×10 ⁻⁴	106.5																																						
RS-320A	YXC	67WA421C*	82	84.5 to 87	75	32H7	+0.025 0	33	7.55×10 ⁻⁴	170.8																																						
RS-900A	YE2	67WA421E*	86	86 to 92	75	35	+0.035 +0.010	58	7.48×10 ⁻⁴	106.5																																						
	YXH	67WA421H*	144	140.5 to 149.5	77	42H7	+0.025 0	62	9.73×10 ⁻⁴	277.3																																						
RS-900A	ZS2	96WA421-*	149	143.5 to 152.5	110	55H7	+0.030 0	53	3.83×10⁻³	657																																						

* Ensure that length A' of the spline insertion position is within the range indicated in the table above.

1/10 tapered shaft



Model	Code	Order item		Input spline dimensions (mm)									
Woder	Code	number	А	A'*	øB		øC		E		F	Input shaft equivalent (kgm ²)	
RS-260A	WXA	60WA140A*	72	73.5 to 75.5	59	32	+0.10 0	65	7	+0.049 +0.013	17.75	5.08×10 ⁻⁴	
N3-200A	WXE	60WA140E*	89	87.5 to 90	59	35	+0.10 0	57	6	+0.2 +0.1	18.85	6.53×10 ⁻⁴	
RS-320A	YXS	67WA140-*	60	54 to 69.5	50	32	+0.10 0	60	7	+0.08 +0.043	17.75	2.06×10 ⁻⁴	
RS-900A	YXE	67WA140E*	81	81.5 to 87.5	50	35	+0.10 0	55	6	+0.040 +0.010	18.55	2.74×10 ⁻⁴	

* Ensure that length A' of the spline insertion position is within the range indicated in the table above.

Round type

		Order item		Flange ou	ter dimens	ions (mm)			Reduction	gear mo	ounting di	mension	s (mm)		Motor mounting dimensions (mm)						
Model	Code	number	øA	øB	С	D	øE		øF øG T øH øJ K				øL MøNPQR						R		
	GA	35PA203GA*	140	129	43	38	96	106h7	0 -0.035	122	-	9	14	22	95	+0.038 +0.013	7	115	M8	15	-
	GB	35PA203GB*	175	130	45	40	96	106h7	0 -0.035	122	-	9	14	22	110	+0.038 +0.013	7	135	M8	15	-
	GC	35PA203GC*	175	130	45	40	96	106h7	0 -0.035	122	-	9	14	22	110	+0.038 +0.013	7	145	M8	15	-
	GD	35PA203GD*	232	176	45	40	96	106h7	0 -0.035	122	-	9	14	22	114.3	+0.038 +0.013	5	200	M12	22	-
BS-260A	GE	35PA203GE*	232	176	45	40	96	106h7	0 -0.035	122	-	9	14	22	130	+0.039 +0.014	6	165	M10	18	-
110 2007	GF	35PA203GF*	294	220	45	40	96	106h7	0 -0.035	122	-	9	14	22	200	+0.04 +0.015	6	235	M12	22	-
	GG	35PA203GG*	170	130	55	50	96	106h7	0 -0.035	122	-	9	14	22	110	+0.038 +0.013	7	145	M8	15	-
	GH	35PA203GH*	226	176	55	50	96	106h7	0 -0.035	122	-	9	14	22	114.3	+0.038 +0.013	5	200	M12	22	-
	GJ	35PA203GJ*	170	130	50	45	96	106h7	0 -0.035	122	-	9	14	22	110	+0.038 +0.013	7	145	M8	15	-
	GK	35PA203GK*	175	130	45	40	96	106h7	0 -0.035 0	122	-	9	14	22	110	+0.038 +0.013 +0.035	7	130	M8	15	-
	YS	67WA203-*	247	174	65.5	61.5	114.3	170h7	-0.040 0	210	140	13	-	25	114.3H7	+0.035	10	200	M12	24	-
	YA	67WA203A*	238	174	75.5	71.5	114.3	170h7	-0.040 0	210	140	13	20	25	114.3H7	+0.035 0 +0.046	10	200	M12	24	-
	YB	67WA203B*	317	220	75.5	71.5	148	170h7	-0.040 0	210	140	13	20	25.5	200H7	+0.046	10	235	M12	24	-
	YC	67WA203C*	317	220	85.5	81.5	148	170h7	-0.040 0	210	140	13	20	25.5	200H7	+0.040	10	235	M12	24	-
RS-320A	YD	67WA203D*	245	200	180	176	114.3	170h7	-0.040 0	210	140	13	20	25	114.3H7	+0.033	10	200	M12	24	-
	YE	67WA203E*	317	220	124	120	148	170h7	-0.040 0	210	140	13	20	25	200H7	+0.040	10	235	M12	24	-
	YG	67WA203G*	317	220	80	76	148	170h7	-0.040 0	210	140	13	20	25	200H7	0	10	235	M12	24	-
	YH	67WA203H*	305	200	110	106	114.3	170h7	-0.040 0	210	140	13	20	25	114.3H7	0 +0.035	10	200	M12	24	-
	YJ YK	67WA203J*	310 305	220 200	104 139	100	110 114.3	170h7 170h7	-0.040 0	210 210	140 140	13 13	- 20	25 25	110H7 114.3H7	0 +0.035	10 10	145 200	M8 M12	16 24	-
	ZS	96WA203-*	317	200	139	135	163	194h7	-0.040 0	210	140	13.5	20	100	200H7	0 +0.046	7	200	M12	24	-
	ZA	96WA203A*	238	240	65.5	61.5	114.3	194h7	-0.046	210	140	13.5	20	25	114.3H7	0 +0.035	, 10	200	M12	24	-
	ZB	96WA203B*	244	200	165	161	114.3	194h7	-0.046	210	140	13	20	25	114.3H7	0 +0.035	10	200	M12	24	-
RS-900A	ZC	96WA203C*	258	200	79.5	75.5	114.3	194h7	-0.046	210	140	13	20	25	114.3H7	0 +0.035	10	200	M12	24	-
	ZD	96WA203D*	312	213	80.5	76.5	180	194h7	-0.046 0 -0.046	210	140	13	20	25.5	200H7	0 +0.046 0	10	235	M12	24	-
	ZE	96WA203E*	238	200	110.5	106.5	114.3	194h7	-0.046 0 -0.046	210	140	13	20	25	114.3H7	+0.035	10	200	M12	24	-
	ZF	96WA203F*	312	220	85.5	81.5	175	194h7	-0.048 0 -0.046	210	140	13.5	20	25.5	200H7	+0.046	10	235	M12	24	-

This product features high precision and high rigidity, however, it is necessary to strictly comply with various restrictions and make considerations to maximize the product's features. Please read this technical document thoroughly and select and adopt an appropriate model based on the actual operating environment, method, and conditions at your facility.

Export

• When this product is exported from Japan, it may be subject to the export regulations provided in the "Foreign Exchange Order and Export Trade Control Order". Be sure to take sufficient precautions and perform the required export procedures in advance if the final operating party is related to the military or the product is to be used in the manufacture of weapons, etc.

Application

 If failure or malfunction of the product may directly endanger human life or if it is used in units which may injure the human body (atomic facilities, space equipment, medical equipment, safety units, etc.), examination of individual situations is required. Contact our agent or nearest business office in such a case.

Safety measures

• Although this product has been manufactured under strict quality control, a mistake in operation or misuse can result in breakdown or damage, or an accident resulting in injury or death. Be sure to take all appropriate safety measures, such as the installation of independent safeguards.

Product specifications indicated in this catalog

• The specifications indicated in this catalog are based on Nabtesco evaluation methods. This product should only be used after confirming that it is appropriate for the operating conditions of your system.

Operating environment

 Use the reduction gear under the following environment: Location where the ambient temperature is within the range from -10°C to 40°C. Location where the humidity is less than 85% and no condensation occurs. Location where the altitude is less than 1000 m. Well-ventilated location 	 Do not install the reduction gear at the following locations. Locations where a lot of dust is collected. Outdoor areas that are directly affected by wind and rain Locations near to areas that contains combustible, explosive, or corrosive gases and flammable materials. Locations that are heated due to heat transfer and radiation from peripherals and direct sun. Locations where the performance of the motor can be affected by magnetic fields or vibration.
---	--

Note 1: If the required operating environment cannot be established/met, contact us in advance.

2: When using the reduction gear under special conditions (clean room, equipment for food, concentrated alkali, high-pressure steam, etc.), contact our agent or nearest business office in advance.

Maintenance

• The standard replacement time for lubricant is 20,000 hours. However, when operation involves a reduction gear surface temperature above 40°C, the state of degradation of the lubricant should be checked in advance of that and the grease replaced earlier as necessary.

Reduction gear temperature

• When the reduction gear is used under high load and at a high duty ratio, it may overheat and the surface temperature may exceed the allowable temperature. Be aware of conditions so that the surface temperature of the reduction gear does not exceed 60°C while it is in operation. There is a possibility of damage (to the product) if the surface temperature exceeds 60°C.

Reduction gear output rotation angle

• When the range of the rotation angle is small (10 degrees or less), the service life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Note: Contact us in case the rotation angle is 10 degrees or less.

Manuals

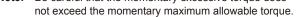
• Safety information and detail product instructions are indicated in the operation manual. The operation manual can be downloaded from the following website.

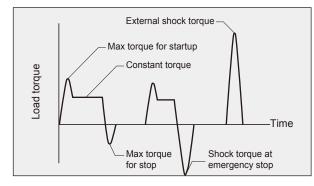
http://precision.nabtesco.com/

Glossary

Rated service life

The lifetime resulting from the operation with the rated torque and the rated output speed is referred to as the "rated service life".


Allowable acceleration/deceleration torque


When the machine starts or stops, the load torque to be applied to the reduction gear is larger than the constant-speed load torque due to the effect of the inertia torque of the rotating part. In such a situation, the allowable torque during acceleration/ deceleration is referred to as "allowable acceleration/ deceleration torque".

Note: Be careful that the load torque, which is applied at startup and stop, does not exceed the allowable acceleration/deceleration torque.

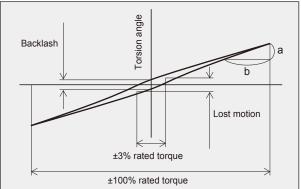
Momentary maximum allowable torque

A large torque may be applied to the reduction gear due to execution of emergency stop or by an external shock. In such a situation, the allowable value of the momentary applied torque is referred to as "momentary maximum allowable torque". **Note:** Be careful that the momentary excessive torque does

Allowable output speed

The allowable value for the reduction gear's output speed during operation without a load is referred to as the "allowable output speed".

Notes: Depending on the conditions of use (duty ratio, load, ambient temperature), the reduction gear temperature may exceed 60°C even when the speed is under the allowable output speed. In such a case, either take cooling measures or use the reduction gear at a speed that keeps the surface temperature at 60°C or lower.


Duty ratio

The duty ratio is defined as the ratio of the sum total time of acceleration, constant speed, and deceleration to the cycle time of the reduction gear.

Torsional rigidity, lost motion, backlash

When a torque is applied to the output shaft while the input shaft is fixed, torsion is generated according to the torque value. The torsion can be shown in the hysteresis curves. The value of b/a is referred to as "torsional rigidity". The torsion angle at the mid point of the hysteresis curve width within $\pm 3\%$ of the rated torque is referred to as "lost motion". The torsion angle when the torque indicated by the hysteresis curve is equal to zero is referred to as "backlash".

<Hysteresis curve>

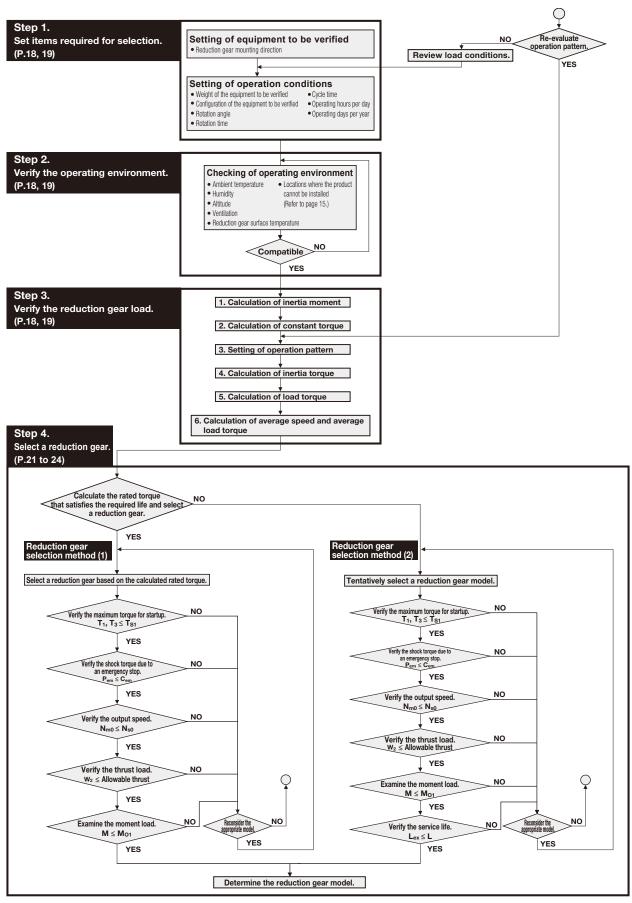
Startup efficiency

The efficiency of the moment when the reduction gear starts up is referred to as "startup efficiency".

No-load running torque (input shaft)

The torque for the input shaft that is required to run the reduction gear without load is referred to as "no-load running torque".

Allowable moment and maximum thrust load

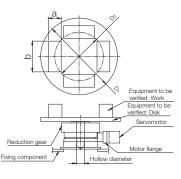

The external load moment may be applied to the reduction gear during normal operation. The allowable values of the external moment and the external axial load at this time are each referred to as "allowable moment" and "maximum thrust load".

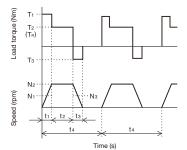
Momentary maximum allowable moment

A large moment may be applied to the reduction gear due to an emergency stop or external shock. The allowable value of the momentary applied moment at this time is referred to as "momentary maximum allowable moment."

Note: Be careful so that the momentary excessive moment does not exceed the momentary maximum allowable moment.

Product Selection Product selection flowchart




A limitation is imposed on the motor torque value according to the momentary maximum allowable torque of the selected reduction gear. (Refer to page 25.)

With horizontal rotational transfer

Step 1. Set the items required for selection.

Setting item	Setting
Reduction gear mounting direction	Vertical shaft installation
Equipment weight to be considered	
W _A Disk weight (kg)	2,000
W _B Work weight (kg)	100×4 pieces
Equipment configuration to be considered	
D ₁ ———— Disk: D dimension (mm)	1,200
a Workpiece: a dimension (mm)	100
b Workpiece: b dimension (mm)	300
D ₂ ——— Workpiece: P.C.D. (mm)	1,000
Operation conditions	
θ ———— Rotation angle (°)* ¹	180
$[t_1+t_2+t_3]$ —— Rotation time (s)	2.5
[t ₄] ———— Cycle time (s)	20
Q1 — Equipment operation hours per day (hours/day)	12
Q2 — Equipment operation days per year (days/year)	365

60

40

-10

-10

 $S_0(^{\circ}C)$

40

S₁(°C)

*1. When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Step 2. Verify the operating environment.

Checkpoint	Standard value
S ₀ Ambient temperature (°C)	-10 to +40
S1 Reduction gear surface temperature (°C)	60 or less

Note: Refer to "Operating environment" on p. 15 for values other than those listed above.

Step 3-1. Examine the reduction gear load

	Setting item	Calculation formula	Selection examples							
(1) Calculate the	(1) Calculate the inertia moment based the calculation formula on page 52.									
I _R	Load inertia moment (kgm²)	$\begin{split} I_{R1} = & \frac{W_A \times \left(\frac{D_1}{2 \times 1,000}\right)^2}{2} \\ I_{R2} = & \left[\frac{W_B}{12} \left\{ \left(\frac{a}{1,000}\right)^2 + \left(\frac{b}{1,000}\right)^2 \right\} + W_B \times \left(\frac{D_2}{2 \times 1,000}\right)^2 \right] \times n \\ I_{R1} = & \text{Disk inertia moment} \\ I_{R2} = & \text{Work inertia} \\ I_R = & I_{R1} + I_{R2} \\ n & = & \text{Number of Workpieces} \end{split}$	$I_{R1} = \frac{2,000 \times \left(\frac{1,200}{2 \times 1,000}\right)^2}{2}$ = 360 (kgm ²) $I_{R2} = \left[\frac{100}{12} \left[\left(\frac{100}{1,000}\right)^2 + \left(\frac{300}{1,000}\right)^2\right] + 100 \times \left(\frac{1,000}{2 \times 1,000}\right)^2\right] \times 4$ = 103.3 (kgm ²) $I_{R} = 360 + 103.3$ = 463.3 (kg m ²)							
(2) Examine the o	constant torque.									
T _R	Constant torque (Nm)	$\begin{array}{l} T_{\text{R}} \!=\!\!(W_{\text{A}}\!+\!W_{\text{B}})\!\times\!9.8\!\times\!\frac{D_{\text{R}}}{2\!\times\!1,000}\!\times\!\mu \\ \mu \!=\! \text{Friction factor} \\ \text{Note: Use 0.015 for this example as the load} \\ \text{ is applied to the bearing of the} \\ \text{ precision reduction gear RV.} \\ D_{\text{in}} \!=\! \text{Rolling diameter: Use the pilot diameter} \\ \text{ which is almost equivalent} \\ \text{ to the rolling diameter in} \\ \text{ this selection calculation.} \\ \text{Note: If the reduction gear model is not determined,} \\ \text{ select the following pilot diameter:} \\ \text{Maximum pilot diameter: 490 (mm)} \\ (\text{RS-900A}) \end{array}$	$T_{R} = (2,000 + 100 \times 4) \times 9.8 \times \frac{490}{2 \times 1,000} \times 0.015$ = 86.4 (Nm)							

Step 3-2: Proceed to p. 20.

With vertical rotational transfer

Step 1. Set the items required for selection.

Setting
Horizontal shaft installation
2,000
500
500
320
90
1.5
20
24
365

Servomoto

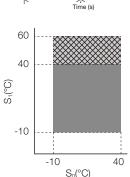
Reduction gea

Motor flange

*1. When the range of the rotation angle is small (10 degrees or less), the rating life of the reduction gear may be reduced due to poor lubrication or the internal parts being subject to a concentrated load.

Step 2. Verify the operating environment.

Checkpoint	Standard value
S ₀ Ambient temperature (°C)	-10 to +40
S1 Reduction gear surface temperature (°C)	60 or less


Note: Refer to "Operating environment" on p. 15 for values other than those listed above.

Step 3-1. Examine the reduction gear load.

			00(0)	
	Setting item	Calculation formula	Selection examples	
(1) Calculate the	inertia moment.			
I _R	Load inertia moment (kgm²)	$I_{R} = \frac{W_{C}}{12} \times \left\{ \left(\frac{a}{1,000} \right)^{2} + \left(\frac{b}{1,000} \right)^{2} \right\} + W_{C} \times \left(\frac{R}{1,000} \right)^{2}$	$I_{R} = \frac{2,000}{12} \times \left\{ \left(\frac{500}{1,000} \right)^{2} + \left(\frac{500}{1,000} \right)^{2} \right\} + 2,000 \times \left(\frac{320}{1,000} \right)^{2}$ = 288.1 (kgm ²)	
(2) Examine the c	constant torque.			
T _R	Constant torque (Nm)	$T_{R} = W_{C} \times 9.8 \times \frac{R}{1,000}$	$T_{R} = 2,000 \times 9.8 \times \frac{320}{1,000}$ = 6,272 (Nm)	

Step 3-2: Proceed to p. 20.

(Refer to "With horizonta5rotational transfer" for selection examples.)

Step 3-2. Set items required for selection.

	Setting item	Calculation formula	Selection examples (With horizontal rotational transfer)	
(3) Set the	acceleration/deceleration time, con	stant-speed operation time, and output speed.		
t ₁ ———	—— Acceleration time (s)	The operation pattern does not need to be verified if it is already set. If the operation pattern has not been determined, use the fol- lowing formula to calculate the reference operation pattern.	Examine the operation pattern using N ₂ = 15 rpm as the reduction gear output speed is unknown. $t_1 = t_3 = 2.5 - \frac{180}{\left(\frac{15}{60} \times 360\right)} = 0.5 \text{ (s)}$	
t ₂ ———	Constant-speed operation time (s)	lowing formula to calculate the reference operation pattern. $t_1 = t_3 = \text{Rotation} [t_1 + t_2 + t_3] - \frac{\theta}{\left(\frac{N_2}{60} \times 360\right)}$ $t_2 = \text{Rotation} [t_1 + t_2 + t_3] - (t_1 + t_3)$	$\left(\frac{15}{60} \times 360\right)$ t ₂ = 2.5 - (0.5 + 0.5) = 1.5 (s)	
t ₃	—— Deceleration time (s)	Note: 1. Assume that t ₁ and t ₃ are the same. Note: 2. N ₂ = 15 rpm if the reduction gear output speed (N ₂) is not known.	$\therefore t_1 = t_3 = 0.5$ (s) $t_2 = 1.5$ (s)	
N2	Constant speed (rpm)	Note: 3. If t ₁ and t ₃ is less than 0, increase the output speed or extend the rotation time.	N ₂ =15 (rpm)	
N1	Average speed for startup (rpm)	$N_1 = \frac{N_2}{2}$	$N_1 = \frac{15}{2} = 7.5$ (rpm)	
-	—— Average speed for stop (rpm)	$N_3 = \frac{N_2}{2}$	$N_3 = \frac{15}{2} = 7.5$ (rpm)	
(4) Calcula	ate the inertia torque for acceleration.	/deceleration.		
ΤΑ	Inertia torque for acceleration (Nm)	$T_{A} = \left\{ \frac{I_{R} \times (N_{2} - 0)}{t_{1}} \right\} \times \frac{2\pi}{60}$	$T_{A} = \left\{\frac{463.3 \times (15 - 0)}{0.5}\right\} \times \frac{2\pi}{60}$ = 1,455 (Nm)	
T _D	Inertia torque for deceleration (Nm)	$T_{D} = \left\{ \frac{I_{R} \times (0 - N_{2})}{t_{3}} \right\} \times \frac{2\pi}{60}$	$T_{\rm D} = \left\{ \frac{463.3 \times (0-15)}{0.5} \right\} \times \frac{2\pi}{60}$ = -1,455 (Nm)	
(5) Calcula	ate the load torque for acceleration/c	leceleration.		
T ₁	Maximum torque for startup (Nm)	T ₁ = T _A + T _R T _R : Constant torque <u>With horizontal rotational transfer</u> <u>Refer to page 18</u> <u>With vertical rotational transfer</u> <u>Refer to page 19</u>	$T_1 = 1,455 + 86.4 $ = 1,541.4 (Nm)	
T ₂ ——	Constant maximum torque (Nm)	$T_2 = T_R $	T ₂ = 86.4 (Nm)	
Τ ₃	Maximum torque for stop (Nm)	$\begin{array}{l} T_3 = \left T_D + T_R \right \\ T_R : \text{Constant torque} \\ \hline & \text{With horizontal rotational transfer} \\ \hline & \text{With vertical rotational transfer} \\ \hline & \text{Refer to page 19} \end{array}$	$T_3 = -1,455 + 86.4 $ = 1,368.6 (Nm)	
(6)-1 Calcu	ulate the average speed.	1		
N _m	Average speed (rpm)	$N_{m} = \frac{t_{1} \times N_{1} + t_{2} \times N_{2} + t_{3} \times N_{3}}{t_{1} + t_{2} + t_{3}}$	$N_{m} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{0.5 + 1.5 + 0.5}$ = 12 (rpm)	
(6)-2 Calcu	ulate the average load torque.	•		
T _m	Average load torque (Nm)	$T_{m} = \sqrt[10]{\frac{10}{3} \frac{10}{t_{1} \times N_{1} \times T_{1}^{\frac{10}{3}} + t_{2} \times N_{2} \times T_{2}^{\frac{10}{3}} + t_{3} \times N_{3} \times T_{3}^{\frac{10}{3}}}{t_{1} \times N_{1} + t_{2} \times N_{2} + t_{3} \times N_{3}}}$	$T_{m}^{10} = \sqrt[10]{\frac{10}{0.5 \times 7.5 \times 1.5 \times 1.5 \times 1.5 \times 15 \times 86.4^{-3} + 0.5 \times 7.5 \times 1.368.6^{-3}}{0.5 \times 7.5 \times 1.5 \times 15 + 0.5 \times 7.5}}$ =963.9 (Nm)	

Go to page 21 if the reduction gear model is verified based on the required life. Go to page 23 if the service life is verified based on the reduction gear model.

Step 4. Select a reduction gear.

Reduction gear selection method (1) Calculate the required torque based on the load conditions and required life and select a reduction gear.

Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)	
(1) Calculate the rated torque for the reduction	gear that satisfies the required life.		
Lex — Required life (year)	Based on the operation conditions	20 years	
Q _{1cy} Number of cycles per day (times)	$Q_{tcy} = \frac{Q_1 \times 60 \times 60}{t_4}$	$Q_{tcy} = \frac{12 \times 60 \times 60}{20}$ = 2,160 (times)	
$Q_3 - $ Operating hours of reduction gear per day (h)	$Q_3 = \frac{Q_{t_{CY}} \times (t_1 + t_2 + t_3)}{60 \times 60}$	$Q_3 = \frac{2,160 \times (0.5 + 1.5 + 0.5)}{60 \times 60}$ = 1.5 (h)	
Q ₄ Operating hours of reduction gear per year (h)	$Q_4 = Q_3 \times Q_2$	Q ₄ =1.5×365 =548 (h)	
L _{hour} ——— Reduction gear service life (h)	$Lhour = Q_4 \times L_{ex}$	Lnour = 548 × 20 = 10,960 (h)	
Reduction gear rated torque To'	$ \begin{array}{l} T_0' = T_m \times \displaystyle \frac{(10)}{3} \sqrt{\frac{Lhour}{K} \times \frac{N_m}{N_0}} \\ K : \text{Reduction gear rated life (h)} \\ N_0 : \text{Reduction gear rated output speed (rpm)} \end{array} $	$T_{0}' = 963.9 \times \binom{10}{3} \sqrt{\frac{10,980}{6,000} \times \frac{12}{15}} = 1.080 \text{ (Nm)}$	
(2) Tentatively select a reduction gear model ba	used on the calculated rated torque.		
Tentative selection of the reduction gear	Select a reduction gear for which the rated torque of the reduction gear $[T_0]^{-1}$ is equal to or greater than the rated torque of the reduction gear that satisfies the required life $[T_0]$. *1 $[T_0]$: Refer to the rating table on page 8.	RS-260A that meets the following condition is tentatively selected: $[T_0] \ 2,548 \ (Nm) \ge [T_0'] \ 1.080 \ (Nm)$	
(3) Verify the maximum torque for startup and s	stop.		
Verification of maximum torque for startup and stop	Check the following conditions: The allowable acceleration/deceleration torque $[T_{s1}]^{-1}$ is equal to or greater than the maximum starting torque $[T_{1}]^{-2}$ and maximum stopping torque $[T_{3}]^{-2}$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. ⁺¹ [T_{s1}]: Refer to the rating table on page 8.	$\label{eq:states} \begin{array}{l} [T_{s1}] \; 6,370 \; (Nm) \geq [T_1] \; 1,541.4 \; (Nm) \\ [T_3] \; 1,368.6 \; (Nm) \\ \mbox{According to the above conditions, the tentatively selected} \\ \mbox{model should be no problem.} \end{array}$	
	*2 [T1] and [T3]: Refer to page 24.	<u> </u>	
(4) Verify the output speed.			
N _{m0} ———— Average speed per cycle (rpm)	$N_{m0} = \frac{t_1 \times N_1 + t_2 \times N_2 + t_3 \times N_3}{t_4}$	$N_{m0} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{20}$ = 1.5 (rpm)	
	Check the following condition: The allowable output speed $\left[N_{50}\right]^{-1}$ is equal to or greater than the average speed per cycle $\left[N_{m0}\right]$		
Verification of output speed	If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. Contact us regarding use of the model at a speed outside the allowable output speed $[N_{S0}]^{-1}$.	$\label{eq:Ns0} \begin{split} &[N_{s0}] \ 21.5 \ (rpm) \geq [N_{m0}] \ 1.5 \ (rpm) \\ & \text{According to the above condition, the tentatively selected} \\ & \text{model should be no problem.} \end{split}$	
	Note: The value of $[\rm N_{SC}]$ is the speed at which the case temperature is balanced at 60°C for 30 minutes.		
	*1 $[N_{\rm S0}]$ and $[N_{\rm S1}]:$ Refer to the rating table on page 8.		

Product Selection Model code selection examples

	Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)
(5) Verify t	he shock torque at the time of an em	nergency stop.	
P _{em} ——	Expected number of emergency stop times (times)	Based on the operation conditions.	For example, an emergency stop occurs once a month. $ [P_{em}] = 1 \times 12 \times required life (year) [L_{ex}] $ $ = 12 \times 20 = 240 \text{ (times)} $
T _{em}	Shock torque due to an emergency stop (Nm)	Load torne (Nm)	For example, $[T_{em}] = 5,000$ (Nm)
N _{em} —	Speed at the time of an emergency stop (rpm)	02 29 3 -T _{an}	For example, [Nem] = 15 (rpm)
t _{em}	Deceleration time at the time of an emergency stop (s)	Image: Set the operation conditions that meet the following requirement: Shock torque due to an emergency stop [Tem] is equal to or less than the momentary maximum allowable torque [Tsz]	For example, $[t_{em}] = 0.05$ (s)
Z4 ——	Number of pins for reduction gear	Model Number of pins (Z4) RS-260A 60 RS-320A 58	Number of pins for RS-260A: 60
C _{em} —	Allowable number of shock torque application times	$C_{em} = \frac{775 \times \left(\frac{T_{S2}}{T_{em}}\right)^{\frac{10}{3}}}{Z_4 \times \frac{N_{em}}{60} \times t_{em}}$ Note [T _{s2}]: Momentary maximum allowable torque, refer to the rating table on page 8.	$C_{\text{em}} = \frac{775 \times \left(\frac{12,740}{5,000}\right)^{\frac{10}{3}}}{60 \times \frac{15}{60} \times 0.05} = 23,347 \text{ (times)}$
Verificatio	on of shock torque due to an cy stop	Check the following condition: The allowable shock torque application count $[C_{em}]$ is equal to or greater than the expected emergency stop count $[P_{em}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	$\label{eq:cern} \begin{array}{l} [C_{em}] \ 23,347 \geq [P_{em}] \ 240 \\ \mbox{According to the above condition, the tentatively selected} \\ \mbox{model should be no problem.} \end{array}$
(6) Verify t	he thrust load and moment load.		
	R adial load (N)	Output shaft mounting surface	0 (N)
l —	Distance to the point of radial load application (mm)		0 (mm)
W2	—— Thrust load (N)		In this example, $W_2 = W_A + W_B = (2,000 + 100 \times 4) \times 9.8$ = 23,520 (N) Note W_A, W_B : Refer to page 18.
l ₂ —	Distance to the point of thrust load application (mm)		0 (mm) (As the workpiece center is located on the rotation axis)
М ——	—— Moment load (Nm)	$M = \frac{W_1 \times (\ell + a) + W_2 \times \ell_2}{1,000}$ a: Refer to the calculation of the tilt angle on page 27.	RS-260A As dimension a = 232.4 (mm): $M = \frac{0 \times (0+232.4) + 23,520 \times 0}{1,000}$ = 0 (Nm)
Verify the	Check that the thrust load and moment load are within the range in the allowable moment diagram on page 26. When radial load W1 is applied within dimension b, use the reduction gear within the allowable radial load. Wr: Allowable radial load, see the rating table on page 8. If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.		For this example, Thrust load $[W_2] = 23,520 (N)$ Moment load $[M] = 0 (N)$ As the above values are within the range in the allowable moment diagram, the tentatively selected model should be no problem.
The actua		all the conditions of the above verification items. d on the motor speed, input torque, and inertia	Based on the above verification result, RS-260A is selected.

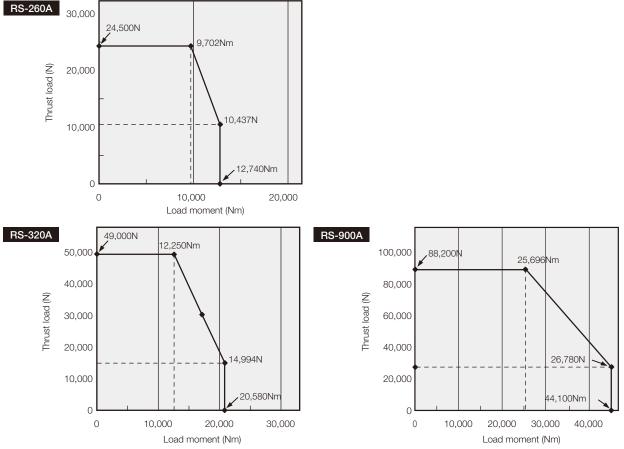
Reduction gear selection method (1) Calculate the required torgue based on the load conditions and required life and select a reduction gear.

Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)
(1) Tentatively select a desired reduction gear r	nodel.	
Tentative selection of a reduction gear	Tentatively select a desired reduction gear model.	For example, tentatively select RS-260A.
2) Verify the maximum torque for startup and s	stop.	
Verification of maximum torque for startup and stop	Check the following conditions: The allowable acceleration/deceleration torque $[T_{s1}]^{-1}$ is equal to or greater than the maximum starting torque $[T_1]^2$ and maximum stopping torque $[T_3]^2$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model. ⁺¹ [T_{s1}]: Refer to the rating table on page 8. ⁺¹ [T_{s1}]: Refer to the rating table on page 8.	$\begin{array}{l} [T_{s1}] \ 6,370 \ (Nm) \geq [T_1] \ 1,541.4 \ (Nm) \\ [T_3] \ 1,368.6 \ (Nm) \\ \ According \ to \ the \ above \ conditions, \ the \ tentatively \ selected \ model \ should \ be \ no \ problem. \end{array}$
(3) Verify the output speed.	*2 [T ₁] and [T ₃]: Refer to page 20.	
N _{m0} — Average speed per cycle (rpm)	$N_{m0} = \frac{t_1 \times N_1 + t_2 \times N_2 + t_3 \times N_3}{t_4}$	$N_{m0} = \frac{0.5 \times 7.5 + 1.5 \times 15 + 0.5 \times 7.5}{20}$ $= 1.5 (rpm)$
Verification of output speed	Check the following condition: The allowable output speed $[N_{s0}]^{-1}$ is equal to or greater than the average speed per cycle $[N_{m0}]$ If the tentatively selected reduction gear is outside of the specifica- tions, change the reduction gear model. Contact us regarding use of the model at a speed outside the allow- able output speed $[N_{S0}]^{+1}$. Note: The value of $[N_{S0}]$ is the speed at which the case temperature is balanced at 60°C for 30 minutes. *1 $[N_{S0}]$ and $[N_{S1}]$: Refer to the rating table on page 8.	$[N_{s0}] \ 21.5 \ (rpm) \ge [N_{m0}] \ 1.5 \ (rpm) \\ According to the above condition, the tentatively selected model should be no problem.$
(4) Verify the shock torque at the time of an em Pem Expected number of emergency stop times (times)	Based on the operation conditions.	For example, an emergency stop occurs once a month. $[P_{em}] = 1 \times 12 \times required life (year) [L_{ex}]$ $= 12 \times 20 = 240$ (times)
T _{em} Shock torque due to an emergency stop (Nm)	Coad torge (Mm)	For example, [T _{em}] = 500 (Nm)
N _{em} Speed at the time of an emergency stop (rpm)	-T _{em}	For example, [Nem] = 15 (rpm)
t _{em} Deceleration time at the time of an emergency stop (s)	Num Time (a) Set the operation conditions that meet the following requirement: Shock torque due to an emergency stop [Tem] is equal to or less than the momentary maximum allowable torque [Ts2]	For example, $[t_{em}] = 0.05$ (s)
Z ₄ Number of pins for reduction gear	Model Number of pins (Z4) RS-260A 60 RS-320A 58	Number of pins for RS-260A: 60
C _{em} Allowable number of shock torque application times	$C_{em} = \frac{775 \times \left(\frac{T_{S2}}{T_{em}}\right)^{\frac{10}{3}}}{Z_4 \times \frac{N_{em}}{60} \times t_{em}}$ Note [T _{s2}]: Momentary maximum allowable torque, refer to the rating table on page 8.	$C_{\text{em}} = \frac{775 \times \left(\frac{1,225}{500}\right)^{\frac{10}{3}}}{40 \times \frac{15}{60} \times 0.05} = 30,729 \text{ (times)}$
Verification of shock torque due to an emergency stop	Check the following condition: The allowable shock torque application count $[C_{em}]$ is equal to or greater than the expected emergency stop count $[P_{em}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	$\label{eq:cem} \begin{array}{l} [C_{em}] \ 23,347 \geq [P_{em}] \ 240 \\ \mbox{According to the above condition, the tentatively selected} \\ \mbox{model should be no problem.} \end{array}$

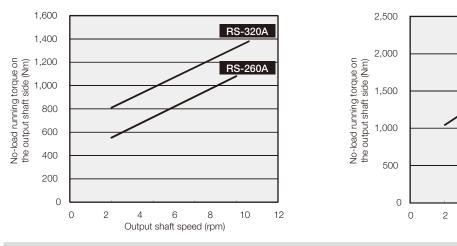
Product Selection Model code selection examples

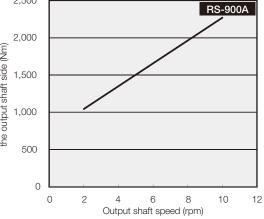
Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)	
(5) Verify the thrust load and moment load.			
W1 Radial load (N)	Output shaft mounting surface	0 (N)	
l Distance to the point of radial load application (mm)	w ₁	0 (mm)	
N ₂		$W_2 = W_A + W_B = (2,000 + 100 \times 4) \times 9.8$ = 23,520 (N) Note WA, WB: Refer to page 18.	
Distance to the point of thrust load application (mm)	- w \ 2 x x 1	0 (mm) (As the workpiece center is located on the rotation axis)	
M ———— Moment load (Nm)	$M = \frac{W_1 \times (\ell + a) + W_2 \times \ell_2}{1,000}$ a: Refer to the calculation of the tilt angle on page 27.	RS-260A As dimension a = 232.4 (mm): $M = \frac{0 \times (0+232.4) + 23,520 \times 0}{1,000}$ = 0 (Nm)	
Verify the thrust load and moment load	Check that the thrust load and moment load are within the range in the allowable moment diagram on page 26. When radial load W1 is applied within dimension b, use the reduction gear within the allowable radial load. Wr: Allowable radial load, see the rating table on page 8. If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	For this example, Thrust load $[W_2] = 2,548$ (N) Moment load $[M] = 0$ (N) As the above values are within the range in the allowable moment diagram, the tentatively selected model should be no problem.	
6) Verify the reduction gear service life.			
L _h Life (h)	$L_{h} = 6,000 \times \frac{N_{0}}{N_{m}} \times \left(\frac{T_{0}}{T_{m}}\right)^{\frac{10}{3}}$	$L_{h} = 6,000 \times \frac{15}{12} \times \left(\frac{2,548}{963.9}\right)^{\frac{10}{3}}$ = 191,552(h)	
Q _{1cy} ——— Number of cycles per day (times)	$Q_{tcy} = \frac{Q_1 \times 60 \times 60}{t_4}$	$Q_{1_{\text{OY}}} = \frac{12 \times 60 \times 60}{20} = 2,160 \text{ (times)}$	
Q ₃ Operating hours per day (h)	$Q_3 = \frac{Q_{tcy} \times (t_1 + t_2 + t_3)}{60 \times 60}$	$Q_3 = \frac{2,160 \times (0.5+1.5+0.5)}{60 \times 60} = 1.5 \text{ (h)}$	
Q4 ———— Operating hours per year (h)	$Q_4 = Q_3 \times Q_2$	Q ₄ =1.5×365=548 (h)	
L _{year} ——— Reduction gear service life (year)	$L_{year} = \frac{L_h}{Q_4}$	$L_{year} = \frac{191,552}{548} = 349.5$ (year)	
L _{ex} ——— Required life (year)	Based on the operation conditions	20 years	
Verification of the service life	Check the following condition: $[L_{ex}]$ is equal to or less than $[L_{year}]$ If the tentatively selected reduction gear is outside of the specifications, change the reduction gear model.	$\label{eq:Lex} \begin{array}{l} \mbox{[Lex] 20 (year)} \leq \mbox{[Lyear] 349.5 (year)} \\ \mbox{According to the above condition, the tentatively selected} \\ \mbox{model should be no problem.} \end{array}$	
0	all the conditions of the above verification items. d on the motor speed, input torque,and inertia	Based on the above verification result, RS-260A is selected.	


Reduction gear selection method (2): Tentatively select a reduction gear model and evaluate the service life.

Limitation on the motor torque

A limitation is imposed on the motor torque value so that the shock torque applied to the reduction gear does not exceed the momentary maximum allowable torque.


Setting/verification item	Calculation formula	Selection examples (With horizontal rotational transfer)
T _{M1} Motor momentary maximum torque (Nm)	Determine based on the motor specifications.	For example, $T_{M1} = 90$ (Nm)
Maximum torque generated at the TM1OUT — output shaft for the reduction gear (Nm) (When an external shock is applied at the time of an emergency stop or motor stop)	$T_{M1out} = T_{M1} \times R \times \frac{100}{\eta}$ R: Actual reduction ratio η : Startup efficiency (%) ,refer to the rating table on page 8.	For example, calculate the maximum torque generated at the output shaft for the reduction gear based on the specifications when RS-260A-120 was selected. $T_{M \ 1cut} = 90 \ \times 120 \ \times \frac{100}{75}$ $= 14,400 \ (Nm)$
Maximum torque generated at the T _{M2OUT} — output shaft for the reduction gear (Nm) (When a shock is applied to the output shaft due to hitting by an obstacle)	$T_{M2out} = T_{M1} \times R \times \frac{\eta}{100}$	$T_{M2out} = 10 \times 120 \times \frac{75}{100}$ = 8,100 (Nm)
Limitation on motor torque value	Check the following condition: The momentary maximum allowable torque [Ts2] ⁻¹ is equal to or greater than the maximum torque generated at the output shaft for the reduction gear [TM:our] and [TM:our] If the above condition is not satisfied, a limitation is imposed on the maximum torque value of the motor. *1 [Ts2]: Refer to the rating table on page 8.	$[T_{S2}]$ 12,740 (Nm) ≤ $[T_{M10UT}]$ 14,400 (Nm) and $[T_{M20UT}]$ 8,100 (Nm) According to the above condition, the torque limit is set for the motor.


Product Selection Allowable moment diagram

When the load moment and the axial load are applied concurrently, ensure that the reduction gear is used within the corresponding allowable moment range, which is indicated in the allowable moment diagram.

Technical Data No-load running torque

The no-load running torque that is converted to the input shaft side value should be calculated using the following equation:

No-load running torque on the input shaft side (Nm) No-load running torque on the output shaft side (Nm) Speed ratio Case temperature: 20°C Lubricant: VIGO GREASE RE0 (RS-260A) Molywhite RE00 (RS-320A, RS-900A)

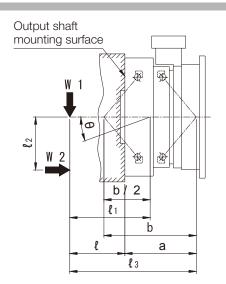
(Measurement conditions)

Technical Data Calculation of tilt angle and torsion angle

Calculation of tilt angle

When a load moment occurs with an external load applied, the output shaft will tilt in proportion to the load moment (If l_3 is larger than b) The moment rigidity indicates the rigidity of the main bearing, and it is represented by the load moment value required for tilting the main bearing by 1 arc.min.

$$\theta = \frac{W_{1}\ell_{1} + W_{2}\ell_{2}}{M_{1} \times 10^{3}} \overset{\theta}{\underset{\ell_{1}, \ell_{2}}{\overset{M_{1}}{\underset{\ell_{1}, \ell_{2}}{\overset{W_{1}}{\underset{\ell_{1}, \ell_{2}}{\overset{W_{1}, \ell_{2}}{\overset{W_{1}}{\underset{W_{1}, \ell_{2}}{\overset{W_{1}, W_{1}}{\underset{W_{1}, \ell_{2}}{\overset{W_{1}, \ell_{1}}{\overset{W_{1}, \ell_{$$


W2: Load (N)
Distance to the point of load application (mm)

$$: l + \frac{b}{2} + a - b$$

Distance from the output shaft
 installation surface to the point of
 load application (mm)

	Moment rigidity	Dimensions (mm)	
Model	(central value) (Nm/arc.min.)	а	b
RS-260A	8,320	232.4	319.3
RS-320A	12,740	268.5	376.4
RS-900A	37,730	325.4	433.4

ł1

Calculation of torsion angle

Calculate the torsion angle when the torque is applied in a single direction, using an example of RS-260A.

 When the load torque is 50 Nm.....Torsion angle (ST₁) When the load torque is within the lost motion range

$$ST_1 = \frac{50}{76.4} \times \frac{1 \text{ (arc.min.)}}{2} = 0.33 \text{ arc.min. or less}$$

2) When the load torque is 1,300 Nm.....Torsion angle (ST_2) When the load torque is within the rated torque range

$$ST_2 = \frac{1}{2} + \frac{2,100-76.4}{1,540} = 1.81 \text{ arc.min.}$$

Note: 1. The torsion angles that are calculated above are for a single reduction gear.2. Contact us for the customized specifications for lost motion.

	Torsional rigidity	Lost motion		
Model	(central value) (Nm/arc.min.)	Lost motion (arc.min.)	Measured torque (Nm)	Backlash (arc.min.)
RS-260A	1,540		±76.4	
RS-320A	1,570	1.0	±94.1	1.0
RS-900A	4,900		±264.6	

Installation of the reduction gear and mounting it to the output shaft

When installing the reduction gear and mounting it to the output shaft, use hexagon socket head cap screws and tighten to the torque, as specified below, in order to satisfy the momentary maximum allowable torque, which is noted in the rating table.

The use of the serrated lock washers are recommended to prevent the hexagon socket head cap screws from loosening and to protect the seat surface from flaws.

Hexagon socket head cap screw

<Bolt tightening torque and tightening force>

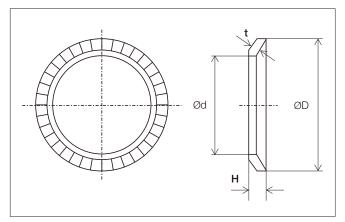
Hexagon socket head cap screw nominal size x pitch	Tightening torque	Tightening force F	Bolt specification
(mm)	(Nm)	(N)	
M5 × 0.8	9.01 ± 0.49	9,310	Hexagon socket head cap screw
M6 × 1.0	15.6 ± 0.78	13,180	JIS B 1176: 2006
M8 × 1.25	37.2 ± 1.86	23,960	Strength class
M10 × 1.5	73.5 ± 3.43	38,080	JIS B 1051: 2000 12.9
M12 × 1.75	129 ± 6.37	55,100	Thread
M16 × 2.0	319 ± 15.9	103,410	JIS B 0209: 2001 6g
M18 × 2.5	441 ± 22.0	126,720	
M20 × 2.5	493 ± 24.6	132,170	

Note: 1. The tightening torque values listed are for steel or cast iron material.

2. If softer material, such as aluminum or stainless, is used, limit the tightening torque. Also take the transmission torque and load moment into due consideration.

<Calculation of allowable transmission torque of bolts>

$$T = F \times \mu \times \frac{D}{2 \times 1,000} \times n \begin{bmatrix} T & Allowable transmission torque by tightening bolt (Nm) \\ \hline F & Bolt tightening force (N) \\ \hline D & Bolt mounting P.C.D. (mm) \\ \mu & Friction factor \\ \mu=0.15: When lubricant remains on the mating face. \\ \mu=0.20: When lubricant is removed from the mating face. \\ n & Number of bolts (pcs.) \end{bmatrix}$$


· Serrated lock washer for hexagon socket head cap screw

Name: Belleville spring washer (made by Heiwa Hatsujyo Industry Co., Ltd.) Corporation symbol: CDW-H

CDW-L (Only for M5)

Material: S50C to S70C Hardness: HRC40 to 48

1 101 11055. 1 1	(Unit: mm)					
Nominal	ID and OD of Belleville spring washer					
size	Ød	ØD	t	н		
5	5.25	8.5	0.6	0.85		
6	6.4	10	1.0	1.25		
8	8.4	13	1.2	1.55		
10	10.6	16	1.5	1.9		
12	12.6	18	1.8	2.2		
16	16.9	24	2.3	2.8		
18	18.9	27	2.6	3.15		
20	20.9	30	2.8	3.55		

Note: When using any equivalent washer, select it with special care given to its outside diameter D.

Lubrication

• The standard lubrication method for the RS reduction gears is greasing.

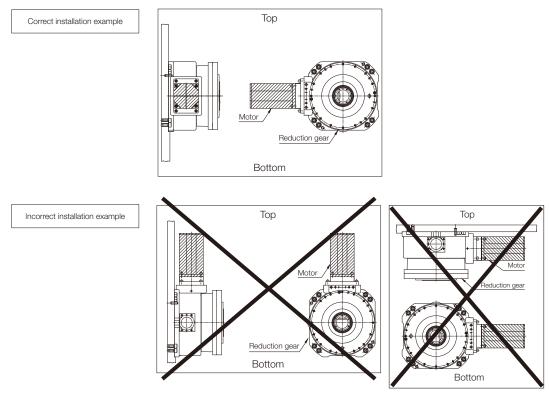
Before the reduction gear is shipped, it is filled with our recommended grease. (For the brand of the pre-filled grease, refer to the following table.)

When operating a reduction gear filled with the appropriate amount of grease, the standard replacement time due to deterioration of the grease is 20,000 hours.

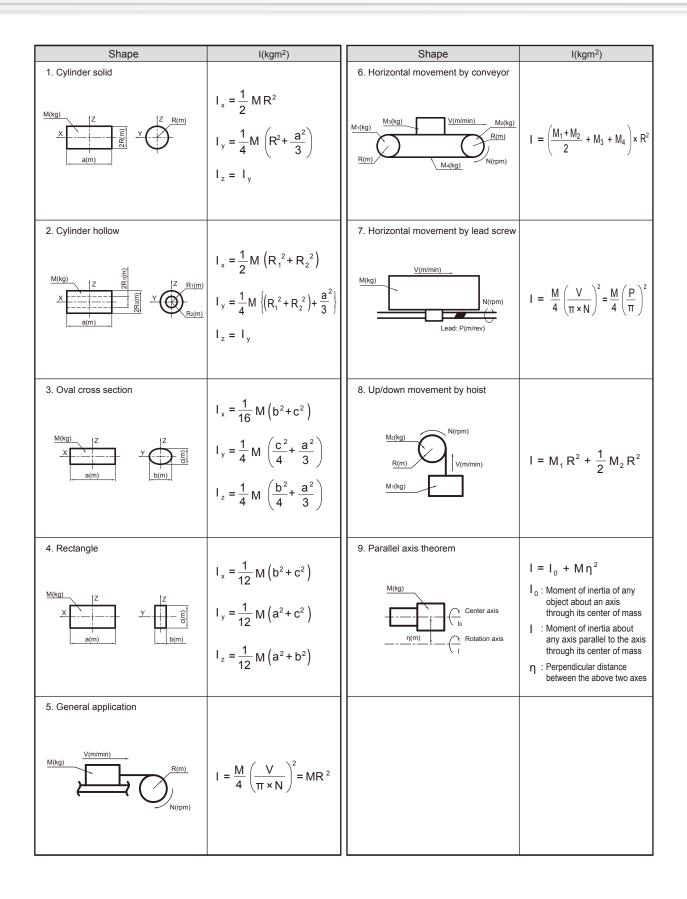
When using the gear with deteriorated grease or under an inappropriate ambient temperature condition (40°C or more), check the deterioration condition of the grease and determine the appropriate replacement cycle.

Specified grease name

Model	RS-260A	RS-320A, RS-900A	
Brand	VIGOGREASE RE0 Molywhite RE00		
Manufacture	Nabtesco Corporation		
Ambient temperature	-10 to 40°C		


• It is recommended that the running-in operation is performed. Abnormal noise or torque variation may occur during operation due to the characteristics of the lubricant. There is no problem with the quality when the symptom disappears after the running-in operation is performed.

Requirements for equipment design


• If the lubricant leaks from the reduction gear or if the motor fails, the reduction gear must be removed. Design the equipment while taking this into consideration.

Reduction gear installation

- For the horizontal shaft installation, do not install the reduction gear while the input shaft (motor) position faces upward. (Be sure to confirm that the input shaft position faces right, left, or downward during installation
- If you intend to use the reduction gear attached to the ceiling, contact our customer representative.

Appendix Inertia moment calculation formula

Troubleshooting checksheet

Check the following items in the case of trouble like abnormal noise, vibration, or malfunctions. When it is not possible to resolve an abnormality even after verifying the corresponding checkpoint, obtain a "Reduction Gear Investigation Request Sheet" from our Website, fill in the necessary information, and contact our Service Center.

[URL]: http://precision.nabtesco.com/documents/request.html

Checked Checkpoint Make sure the equipment's drive section (the motor side or the reduction gear output surface side) in not interfering with another component. Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load) Make sure the required number of bolts are tightened uniformly with the specified tightening torque Make sure the reduction gear, motor, or your company's components are not installed at a slant.
not interfering with another component. Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load) Make sure the required number of bolts are tightened uniformly with the specified tightening torque
Make sure the required number of bolts are tightened uniformly with the specified tightening torque
Make sure the reduction gear, motor, or your company's components are not installed at a slant.
Make sure the specified amount of Nabtesco-specified lubricant has been added.
Make sure there are no problems with the motor's parameter settings.
Make sure there are no components resonating in unity.
Make sure the input gear is appropriately installed on the motor.
Make sure there is no damage to the surface of the input gear teeth.
Make sure the input gear specifications (precision, number of teeth, module, shift coefficient, dimensions of each part) are correct.
Make sure the flange and other components are designed and manufactured with the correct tolerand

The trouble started immediately after installation of the reduction gear

The trouble started during operation

Checked	Checkpoint		
	Make sure the equipment has not been in operation longer than the calculated service life.		
	Make sure the surface temperature of the reduction gear is not higher than normal during operation.		
	Make sure the operation conditions have not been changed.		
	Make sure there are no loose or missing bolts.		
	Make sure the equipment is not under a greater than expected load (torque, moment load, thrust load).		
	Make sure the equipment's drive section is not interfering with another component.		
	Make sure an oil leak is not causing a drop in the amount of lubricant.		
	Make sure there are no external contaminants in the gear, such as moisture or metal powder.		
	Make sure no lubricant other than that specified is being used.		

Jrae	er Information Sheet	and se	nd it with your order. Date.
Company Name:			. Name:
lame:			il:
EL			
We wou ing that tia mom	tem configuration and selected motor and appreciate if you could provide your system con- helps us to understand the speed, constant torque tent of the output shaft for the reduction gear.		
			g b Bolt size c
Motor m	odel		Motor mounting pilot diameter (mm)
	Motor rated output (KW)	a b	Motor mounting pilot diameter (initi) Motor mounting bolt P.C.D (mm)
	Motor rated torque (Nm)	c	Motor mounting bolt size (mm)
	Motor momentary maximum torque (Nm)	d	Motor shaft length (mm)
	Motor rated speed (rpm)	e	Motor shaft diameter (mm)
TAMO		g	Motor shaft effective length (mm)
	ration pattern (output shaft for the reduction gear)		Please inform us of whether a key is attached or not, and when it is attached, also inform us of its dimensior
▶ Upe	Beduction gear output speed ti ti ti ti ti ti ti ti ti ti ti ti ti		xternal load (output shaft for the reduction gear)
	Reduction get output speece (rpm)		put shaft mounting surface
t1	Hereitan and the second definition of the seco		Put shaft mounting surface
t1 t2	$\frac{1}{1}$		Put shaft mounting surface
tı tz t3	$\frac{1}{1}$		Put shaft mounting surface
t1 t2 t3 t4	$\frac{1}{1}$		put shaft mounting surface
t1 t2 t3 t4 Q1CY	$\frac{1}{1}$	<u>Out</u>	put shaft mounting surface
t1 t2 t3 t4 Q1CY Q2	$\frac{1}{1}$		put shaft mounting surface W2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V
t1 t2 t3 t4 Q1CY Q2 N2	$\frac{1}{1}$	<u>Out</u>	put shaft mounting surface W2 Q2 Q2
t1 t2 t3 t4 Q1CY Q2 N2 T1	$\frac{1}{1}$	<u>Out</u>	put shaft mounting surface W2 W2 Q

Warranty

- In the case where Nabtesco confirms that a defect of the Product was caused due to Nabtesco's design or manufacture within the Warranty Period of the Product, Nabtesco shall repair or replace such defective Product at its cost. The Warranty Period shall be from the delivery of the Product by Nabtesco or its distributor to you ("Customer") until the end of one (1) year thereafter, or the end of two thousand (2,000) hours from the initial operation of Customer's equipment incorporating the Product at end user's production line, whichever comes earlier.
- 2. Unless otherwise expressly agreed between the parties in writing, the warranty obligations for the Product shall be limited to the repair or replacement set forth herein. OTHER THAN AS PROVIDED HEREIN, THERE ARE NO WARRATIES ON THE PRODUCT, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 3. The warranty obligation under the Section 1 above shall not apply if:
 - a) the defect was caused due to the use of the Product deviated from the Specifications or the working conditions provided by Nabtesco;
 - b) the defect was caused due to exposure to foreign substances or contamination (dirt, sand etc.)
 - c) lubricant or spare part other than the ones recommended by Nabtesco was used in the Product;
 - d) the Product was used in an unusual environment (such as high temperature, high humidity, a lot of dust, corrosive/volatile/inflammable gas, pressurized/depressurized air, under water/liquid or others except for those expressly stated in the Specifications);
 - e) the Product was disassembled, re-assembled, repaired or modified by anyone other than Nabtesco;
 - f) the defect was caused due to the equipment into which the Product was installed;
 - g) the defect was caused due to an accident such as fire, earthquake, lightning, flood or others; or
 - h) the defect was due to any cause other than the design or manufacturing of the Product.
- 4. The warranty period for the repaired/replaced Product/part under the Section 1 above shall be the rest of the initial Warranty Period of the defective Product subjected to such repair/replace.

Europe and Africa	Nabtesco Precision Europe GmbH Tiefenbroicher Weg 15, 40472 Düsseldorf, Germany TEL: +49-211-173790 FAX: +49-211-364677 E-MAIL: info@nabtesco.de www.nabtesco.de
North and South America	Nabtesco Motion Control Inc. 23976 Freeway Park Drive, Farmington Hills, MI 48335, USA TEL: +1-248-553-3020 FAX: +1-248-553-3070 E-MAIL: engineer@nabtescomotioncontrol.com www.nabtescomotioncontrol.com
China	Shanghai Nabtesco Motion-equipment Co., Ltd. Room 1706, Hong Jia Tower, No. 388 Fu Shan Road, Pudong New Area, Shanghai 200122, China TEL: +86-21-3363-2200 FAX: +86-21-3363-2655 E-MAIL: info@nabtesco-motion.cn www.nabtesco-motion.cn
Asia and others	Nabtesco Corporation Osaka Sales Office 21st Fl, Dojima Avanza, 1-6-20 Dojima, Kita-ku, Osaka 530-0003, Japan TEL: +81-6-6341-7180 FAX: +81-6-6341-7182
	Tsu Plant 594 Icchoda, Katada-cho, Tsu, Mie 514-8533, Japan TEL: +81-59-237-4600 FAX: +81-59-237-4610
	E-MAIL: P_Information@nabtesco.com http://precision.nabtesco.com/
 Nabtesco, VIGOGREASE, RV are Specifications are subject to chang 	registered trademarks or trademarks of Nabtesco Corporation. e without notice.

 Specifications are subject to change without notice.
 The PDF data of this catalog can be downloaded from the following website. http://precision.nabtesco.com/

If any addition or modification is made to the published information, the PDF data may be updated before the printed catalog. Due to this, please note that some contents of the PDF data may be changed or revised from those in this catalog.

• Unauthorized reprinting, reproduction, copying, or translation of this catalog in whole or in part is strictly prohibited.