Gearing Arrangement: Worm
Output Torque: 66N.M~~304N.M
Rated Power: 0.25~~4.0kw
Input Speed: 1400rpm
Output Speed: 14~~186rpm
Model Number: NMRV075
Speed ratio: 7.5/10/15/20/25/30/40/50/60/80/100
Housing material: Aluminium alloy
Worm gear material: chromium alloy 20CrMnTi
Worm wheel material: bronze ZQsn10-1
Bearing: Homemade bearing
Color: Blue/Silver/Coustomzied
Package size: 225*215*285mm
Package weight: 11.5kg
Certificate: ISO9001:2008 CCC,CE
Extra service: OEM
Packaging Details: 1 pc / carton,several cartons / wooden pallet
Port: NingBo port / ZheJiang port / UPS / DHL/ TNT
Characteristics:The Speed reducer motor features(1) Large output torque
(2) Safe, reliable, economical and durable(3) Stable transmission, quiet operation
(4) High heat-radiating efficiency, high carrying ability(5) Combination of 2 single-step worm gear speed reducers, NC2 NC3 NC4 NC5 NC6 NC7 industrial planetary reducer decanter centrifuges parts meeting the requirements of super speed ratio
Performance parameter for RV series worm gear speed reducer
Motor power
Model
speed ratio
output speed
output toruqe
0.25kw
1400rpm
NMRV075
60
24rpm
68.0N.M
NMRV075
80
18rpm
80.0N.M
NMRV075
100
14rpm
94.0N.M
0.37kw
1400rpm
NMRV075
40
35rpm
74.0N.M
NMRV075
50
28rpm
88.0N.M
NMRV075
60
24rpm
97.0N.M
NMRV075
80
18rpm
119.0N.M
NMRV075
100
14rpm
139.0N.M
0.55kw
1400rpm
NMRV075
25
56rpm
76.0N.M
NMRV075
30
47rpm
87.0N.M
NMRV075
40
35rpm
108.0N.M
NMRV075
50
28rpm
128.0N.M
NMRV075
60
24rpm
144.0N.M
NMRV075
80
18rpm
177.0N.M
NMRV075
100
14rpm
206.0N.M
0.75kw
1400rpm
NMRV075
15
94rpm
66.0N.M
NMRV075
20
70rpm
85.0N.M
NMRV075
25
56rpm
101.0N.M
NMRV075
30
47rpm
117.0N.M
NMRV075
40
35rpm
147.0N.M
NMRV075
50
28rpm
174.0N.M
NMRV075
60
24rpm
196.0N.M
NMRV075
80
18rpm
250.0N.M
1.1kw
1400rpm
NMRV075
10
140rpm
66.0N.M
NMRV075
15
94rpm
95.0N.M
NMRV075
20
70rpm
122.0N.M
NMRV075
25
56rpm
148.0N.M
NMRV075
30
47rpm
171.0N.M
NMRV075
40
35rpm
216.0N.M
NMRV075
50
28rpm
263.0N.M
NMRV075
60
24rpm
297.0N.M
1.5kw
1400rpm
NMRV075
7.5
186rpm
68.0N.M
NMRV075
10
140rpm
89.0N.M
NMRV075
15
94rpm
129.0N.M
NMRV075
20
70rpm
166.0N.M
NMRV075
25
56rpm
202.0N.M
NMRV075
30
47rpm
233.0N.M
NMRV075
40
35rpm
299.0N.M
2.2kw
1400rpm
NMRV075
7.5
186rpm
99.0N.M
NMRV075
10
140rpm
131.0N.M
NMRV075
15
94rpm
189.0N.M
NMRV075
20
70rpm
249.0N.M
NMRV075
25
56rpm
304.0N.M
NMRV075
30
47rpm
247.0N.M
3.0kw
1400rpm
NMRV075
7.5
186rpm
135.0N.M
NMRV075
10
140rpm
178.0N.M
NMRV075
15
94rpm
258.0N.M
4.0kw
1400rpm
NMRV075
7.5
186rpm
180.0N.M
NMRV075
10
140rpm
237.0N.M
The speed reducer NMRV075 Accessories outline dimension
K1
G
KG
KH
R
NMRV075
200
25
47.5
20
30
Speed reducer Size of Single Extension & Double extension
D(h6)
B
B1
G1
L
L1
f
b1
t1
NMRV075
28
60
63.5
120
192
247
M10
8
31
The NMRV075 speed reducer Motor – Double extension worm shaft
G2
d(j6)
B
F
b1
t1
NMRV075
90
24
50
M8
8
27
The NMRV075 speed reducer Motor
IEC Motor adapters
Model
PAM(IEC)
N
M
P
ration
Shaft:D
NMRV075
100/112B5
180
215
250
20
–
100/112B14
110
130
160
20
–
90B5
130
165
200
20
24
90B14
95
115
140
20
24
80B5
130
165
200
20
19
80B14
80
100
120
20
19
71B5
110
130
160
20
–
The NMRV075 speed reducer Motor – Mounting positions
Worm gearbox of Position diagram for output flange
Worm gearbox of position diagram for torque arm
Worm gearbox of position diagram for one-way output shaft
Notice for ordering:
1) when ordering,please refer to the details of the products and tell us the exact type your need according to your requirements,like input speed,output torque,configuration,installation, SAITE outrunner brushless dc motor 6374 130kv 170kv rc airplane brushless outrunner motor etc:the installation position of the products in the order should accord with your actual needs,otherwise, it will result in oil leakage, which will impact the serving life of the products negatively.if there is special requirement to the installation position,please stress it and inform us.
2) to attain the excellent state of the variators, the common working speed should be chosen in the middle position,instead, reduction gear box planetary gearbox BWD6 it ismot appropriate to choose in the positions of min,or max.speed
3) if your requirements of worm gearbox or speed variator are different from shte standard products as in the catalogue,like:some portion that should be customized or mounted with special motors,please inform us in advance
Technical data:
Model
RV571 030 040 050 063 075 090 110 130 150
Single unit versions
NMRV – fitted for motor flanged coupling,
NRV – with input shaft,
NMRV-E motor flanged coupling with worm extension shaft,
NRV-E with double extension worm shaft, Built-in-encoder 8inch 5N.m 3648V 350w 400RPM 1571 wire 100kg load brushless DC servo electric wheel hub motor for robot
Power
0.06—-15KW
Single unit reduction ratio
1:5 7.5 10 15 20 25 30 40 50 60 80 100
Output torque
2.6—1195N.M
Worm shaft
20CrMnTi with carburizing and quenching.The hardness of surface is 56-62HRC with carbonized layer 0.5-0.8mm
Worm wheel
worm mandrel is HT250,and worm ring gear,ZQSn10-1
Key Market Insights Related to Worm Reduction Gearboxes
A gearbox is a mechanical device that allows you to shift between different speeds or gears. It does so by using one or more clutches. Some gearboxes are single-clutch, while others use two clutches. You can even find a gearbox with closed bladders. These are also known as dual clutches and can shift gears more quickly than other types. Performance cars are designed with these types of gearboxes.
Backlash measurement
Gearbox backlash is a common component that can cause noise or other problems in a car. In fact, the beats and sets of gears in a gearbox are often excited by the oscillations of the engine torque. Noise from gearboxes can be significant, particularly in secondary shafts that engage output gears with a differential ring. To measure backlash and other dimensional variations, an operator can periodically take the output shaft’s motion and compare it to a known value.
A comparator measures the angular displacement between two gears and displays the results. In one method, a secondary shaft is disengaged from the gearbox and a control gauge is attached to its end. A threaded pin is used to secure the differential crown to the secondary shaft. The output pinion is engaged with the differential ring with the aid of a control gauge. The angular displacement of the secondary shaft is then measured by using the dimensions of the output pinion.
Backlash measurements are important to ensure the smooth rotation of meshed gears. There are various types of backlash, which are classified according to the type of gear used. The first type is called circumferential backlash, which is the length of the pitch circle around which the gear rotates to make contact. The second type, angular backlash, is defined as the maximum angle of movement between two meshed gears, which allows the other gear to move when the other gear is stationary.
The backlash measurement for gearbox is one of the most important tests in the manufacturing process. It is a criterion of tightness or looseness in a gear set, and too much backlash can jam a gear set, causing it to interface on the weaker part of its gear teeth. When backlash is too tight, it can lead to gears jamming under thermal expansion. On the other hand, too much backlash is bad for performance.
Worm reduction gearboxes
Worm reduction gearboxes are used in the production of many different kinds of machines, including steel and power plants. They are also used extensively in the sugar and paper industries. The company is constantly aiming to improve their products and services to remain competitive in the global marketplace. The following is a summary of key market insights related to this type of gearbox. This report will help you make informed business decisions. Read on to learn more about the advantages of this type of gearbox.
Compared to conventional gear sets, worm reduction gearboxes have few disadvantages. Worm gear reducers are commonly available and manufacturers have standardized their mounting dimensions. There are no unique requirements for shaft length, height, and diameter. This makes them a very versatile piece of equipment. You can choose to use one or combine several worm gear reducers to fit your specific application. And because they have standardized ratios, you will not have to worry about matching up multiple gears and determining which ones fit.
One of the primary disadvantages of worm reduction gearboxes is their reduced efficiency. Worm reduction gearboxes usually have a maximum reduction ratio of five to sixty. The higher-performance hypoid gears have an output speed of around ten to twelve revolutions. In these cases, the reduced ratios are lower than those with conventional gearing. Worm reduction gearboxes are generally more efficient than hypoid gear sets, but they still have a low efficiency.
The worm reduction gearboxes have many advantages over traditional gearboxes. They are simple to maintain and can work in a range of different applications. Because of their reduced speed, they are perfect for conveyor belt systems.
Worm reduction gearboxes with closed bladders
The worm and the gear mesh with each other in a combination of sliding and rolling movements. This sliding action is dominant at high reduction ratios, and the worm and gear are made of dissimilar metals, which results in friction and heat. This limits the efficiency of worm gears to around thirty to fifty percent. A softer material for the gear can be used to absorb shock loads during operation.
A normal gear changes its output independently once a sufficient load is applied. However, the backstop complicates the gear configuration. Worm gears require lubrication because of the sliding wear and friction introduced during movement. A common gear arrangement moves power at the peak load section of a tooth. The sliding happens at low speeds on either side of the apex and occurs at a low velocity.
Single-reduction gearboxes with closed bladders may not require a drain plug. The reservoir for a worm gear reducer is designed so that the gears are in constant contact with lubricant. However, the closed bladders will cause the worm gear to wear out more quickly, which can cause premature wear and increased energy consumption. In this case, the gears can be replaced.
Worm gears are commonly used for speed reduction applications. Unlike conventional gear sets, worm gears have higher reduction ratios. The number of gear teeth in the worm reduces the speed of a particular motor by a substantial amount. This makes worm gears an attractive option for hoisting applications. In addition to their increased efficiency, worm gears are compact and less prone to mechanical failure.
Shaft arrangement of a gearbox
The ray-diagram of a gearbox shows the arrangement of gears in the various shafts of the transmission. It also shows how the transmission produces different output speeds from a single speed. The ratios that represent the speed of the spindle are called the step ratio and the progression. A French engineer named Charles Renard introduced five basic series of gearbox speeds. The first series is the gear ratio and the second series is the reverse gear ratio.
The layout of the gear axle system in a gearbox relates to its speed ratio. In general, the speed ratio and the centre distance are coupled by the gear axles to form an efficient transmission. Other factors that may affect the layout of the gear axles include space constraints, the axial dimension, and the stressed equilibrium. In October 2009, the inventors of a manual transmission disclosed the invention as No. 2. These gears can be used to realize accurate gear ratios.
The input shaft 4 in the gear housing 16 is arranged radially with the gearbox output shaft. It drives the lubricating oil pump 2. The pump draws oil from a filter and container 21. It then delivers the lubricating oil into the rotation chamber 3. The chamber extends along the longitudinal direction of the gearbox input shaft 4, and it expands to its maximum diameter. The chamber is relatively large, due to a detent 43.
Different configurations of gearboxes are based on their mounting. The mounting of gearboxes to the driven equipment dictates the arrangement of shafts in the gearbox. In certain cases, space constraints also affect the shaft arrangement. This is the reason why the input shaft in a gearbox may be offset horizontally or vertically. However, the input shaft is hollow, so that it can be connected to lead through lines or clamping sets.
Mounting of a gearbox
In the mathematical model of a gearbox, the mounting is defined as the relationship between the input and output shafts. This is also known as the Rotational Mount. It is one of the most popular types of models used for drivetrain simulation. This model is a simplified form of the rotational mount, which can be used in a reduced drivetrain model with physical parameters. The parameters that define the rotational mount are the TaiOut and TaiIn of the input and output shaft. The Rotational Mount is used to model torques between these two shafts.
The proper mounting of a gearbox is crucial for the performance of the machine. If the gearbox is not aligned properly, it may result in excessive stress and wear. It may also result in malfunctioning of the associated device. Improper mounting also increases the chances of the gearbox overheating or failing to transfer torque. It is essential to ensure that you check the mounting tolerance of a gearbox before installing it in a vehicle.